Estimates for eigenfunctions and eigenvalues of nonlinear elliptic problems
نویسندگان
چکیده
منابع مشابه
Estimates for Eigenvalues of Quasilinear Elliptic
In this paper we find explicit lower bounds for Dirichlet eigenvalues of a weighted quasilinear elliptic system of resonant type in terms of the eigenvalues of a single p-Laplace equation. Also we obtain asymptotic bounds by studying the spectral counting function which is defined as the number of eigenvalues smaller than a given value.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A posteriori error estimates for nonlinear problems. Lr-estimates for finite element discretizations of elliptic equations
— We extend the gênerai framework of [18] for deriving a posteriori error estimâtes for approximate solutions of noniinear elliptic problems such ihat it also yields L'-error estimâtes. The gênerai results are applied to finite element discretizations of scalar quasilinear elliptic pdes of 2nd order and the stationary incompressible Navier-Stokes équations. They immediately yield a posteriori e...
متن کاملEigenvalues and Eigenfunctions
The article describes the eigenvalue and eigenfunction problems. Basic properties, some applications and examples in system analysis are provided.
متن کاملWeak Eigenfunctions for the Linearization of Extremal Elliptic Problems
g(0) > 0 and lim u→∞ g(u) u = ∞. We consider solutions u of (1.1) which are nonnegative in Ω. Typical examples are g(u) = e and g(u) = (1+u) with p > 1. Problem (1.1) and its connections with combustion theory have been extensively studied; see [CR], [G], [JL], [BCMR] and [BE]. It is known that there exists 0 < λ∗ < ∞ such that (i) for 0 ≤ λ < λ∗, there is a minimal classical solution uλ of (1....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1984
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1984-0728703-5